

10ME/AU33

Third Semester B.E. Degree Examination, Aug./Sept.2020 Basic Thermodynamics

Time: 3 hrs.

1

Max. Marks:100

(10 Marks)

Note: 1. Answer any FIVE full questions, selecting at least TWO questions from each part. 2. Use of steam tables is permitted.

<u> PART – A</u>

- a. Define the following :
 - (i) Open system(ii) Closed system(iii) Isolated system(iv) Point function(v) Path function(iii) Isolated system
 - b. State the zeroth law of thermodynamics and briefly explain its significance. (04 Marks)
 - c. The resistance of the winding of a motor at room temperature 28°C and at full load under steady state conditions is given as 75 Ω and 90 Ω respectively. The windings are made of copper with temperature t°C is given by $R_{tp} = R_0[1 + 0.004t]$. If R_0 is the resistance at 0°C, find the temperature of the coil at full load. (06 Marks)
- 2 a. State and explain thermodynamic definition of work. (04 Marks)
 - b. Derive an expression for displacement of the system follows the law $PV^n = constant.$ (06 Marks)
 - c. A system of volume V contains a mass m of gas at a pressure of P and the temperature T,

these properties are related by $\left(P + \frac{a}{V^2}\right)(V - b) = mRT$, where a, b, R are constants, obtain an expression for the displacement work done when the system undergoes an isothermal process from volume 'V₁' to a final volume 'V₂'. Calculate the work for the system which contain 10 kg of gas expanding from 1m³ to 10m³ at a constant temperature of 293 K. Assume a = 15.7×10^4 Nm⁴, b = 1.07×10^{-2} m³ and R = 0.278 kJ/kg-K. (10 Marks)

- 3 a. Give the precise statement of first law of thermodynamics as applied to a closed system undergoing a process and hence prove that internal energy is a property. (08 Marks)
 - b. A nozzle is a device for increasing the velocity of a steadily flowing stream. At the inlet to a certain nozzle, the enthalpy of the fluid passing is 3000 kJ/kg and the velocity is 60 m/s. At the discharge end, the enthalpy is 2762 kJ/kg. The nozzle is horizontal and there is a negligible heat loss from it.
 - (i) Find the velocity at the exit of nozzle
 - (ii) If the inlet area 0.1 m² and specific volume at inlet is 0.187 m³/kg, find the mass flow rate
 - (iii) If the specific volume at the exit of the nozzle is 0.498 m³/kg, find the diameter at the exit section of the nozzle.
 (12 Marks)
- 4 a. State the Kelvin-Plank and Clausius statements of the second law of thermodynamics and show that the violation of the former results in the violation of the latter. (08 Marks)
 - b. A direct heat engine operating between two reservoirs at 327°C and 27°C drives a refrigerator operating between 27°C and 13°C. The efficiency of the heat engine and the refrigerator are each 70% of their maximum values. The heat transferred to the heat engine is 500 kJ. The net heat rejected by the engine and the refrigerator to the reservoir at 27°C is 400 kJ. Find the net work output of the engine refrigerator combination. Draw the schematic representation. (12 Marks)

10ME/AU33

PART - B

- 5 Prove that entropy is a property of a system from Clausius inequality. a.
 - 0.5 kg of ice block at -10° C is brought into contact with 5 kg copper block at 80°C in an b. insulated container. Determine the change in entropy of (i) ice block (ii) copper block (iii) the universe. Given specific heat of ice = 2 kJ/kgK, specific heat of water = 4.2 kJ/kgK, specific heat of copper = 0.5 kJ/kgK, enthalpy of fusion of water at $0^{\circ}\text{C} = 334 \text{ kJ/kg}$.

(10 Marks)

(10 Marks)

(04 Marks)

(10 Marks)

- Sketch the temperature-pressure phase diagram for water mark on it the following regions of 6 a. solid, liquid and vapour phase triple point and critical point. (05 Marks) (05 Marks)
 - Sketch and explain Separating Calorimeter. b.
 - c. Determine the dryness fraction of the steam sample is tested in a separating and throttling calorimeter and the following data were obtained:
 - Pressure of steam sample = 15 bar (i)
 - (ii) Pressure of steam at exit = 1 bar
 - (iii) Temperature of steam at exit = 150° C
 - (iv) Water collected from the separating calorimeter = 0.2 kg/min
 - Discharge collected at the exit = 10 kg/min(v)
- 7 Derive Clausius Clayperson's equation of liquid and explain the significance. (06 Marks) a.
 - Distinguish between: b.
 - (i) Ideal gas and real gas
 - (ii) Perfect gas and semi perfect gas
 - c. 2 kg air ($C_p = 1.005$ kJ/kgK and $C_v = 0.718$ kJ/kgK) is compressed reversibly according to $PV^{1.3}$ = constant from 1 bar, 37°C to 5 bar:
 - Find the increase in internal energy (i)
 - Use the relation $\varphi = [(n-\gamma)/(n-1)]C_v(T_2 T_1)$. Calculate the magnitude and (ii) direction of work.
 - (iii) Show the initial and final states and the process path on T-S diagram. (10 Marks)
- Define mass fractions and mole fractions of the constituents of an ideal gas mixture. 8 a.

(04 Marks)

- b. Find the gas constant and apparent molar mass of a mixture of 2 kg O₂ and 3 kg of N₂, given the inversed gas constant is 8314.2 J/KmolK, molar masses of O₂ and N₂ are respectively 32 and 28. (04 Marks)
- Write short notes on:
 - Vander Waal's equation of states (i)
 - Reduced properties (ii)
 - (iii) Compressibility charts

(12 Marks)